Abstract No: 275

Earth and Environmental Sciences

MAJOR ELEMENT GEOCHEMISTRY OF CHARNOCKITIC ROCKS IN HIGHLAND AND WANNI COMPLEXES OF SRI LANKA

<u>P. Abewardana^{1,2*}</u>, P.L. Dharmapriya¹, S.P.K. Malaviarachchi¹ and Z. Lei³

¹Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka ²Postgraduate Institute of Science, University of Peradeniya, Peradeniya, Sri Lanka ³Institute of Geology and Geophysics, Chinese Academy of Science, Beijing, China ^{*}drckpahan@gmail.com

Wanni Complex (WC) contains upper amphibolite to granulite-facies meta-igneous rocks and minor meta-sedimentary rocks whereas Highland Complex (HC) contains both metasedimentary and meta-igneous rocks formed under granulite-facies conditions. Charnockitic rocks are orthopyroxene-bearing gneisses having a characteristic greenish colour and greasy appearance ranging in composition from granitic to mafic and making-up one of the important components of the lower continental crust in many high-grade terrains including Highland and Wanni Complexes of Sri Lanka. Whole-rock geochemical analysis of major elements is helpful to understand basic geochemical characteristics related to their source rocks, tectonic environment and petrogenetic process. The aim of the present study was to resolve these aspects of HC and WC charnockitic rocks for a better understanding of their petrogenesis. Thirty eight (38) charnockitic rock samples covering both HC and WC were analyzed for major elements by X-Ray Fluorescence (XRF) spectrometry on fused glass discs using a PANalytical AXIOS Minerals instrument at the Rock-Mineral Preparation and Analysis Lab at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS). Harker diagrams and discrimination plots were prepared for geochemical interpretation of the analytical data. As shown by K₂O/Al₂O₃ vs. Na₂O/Al₂O₃ and MgO vs. Al₂O₃ diagrams, all the WC charnockitic rocks and a majority of the HC charnockitic rocks are orthogenesis. The TiO₂, total Fe₂O₃, MnO, CaO, P₂O₅ and MgO contents in charnockitic orthogneisses display a negative correlation with increasing SiO₂ composition with little scatter suggesting fractional crystallization of the protolith magma. Negative correlation of CaO, MgO and total Fe₂O₃ vs. increasing SiO₂ the formation of biotite and plagioclase during fractional crystallization. AFM and SiO₂ vs. Na₂O+K₂O-CaO diagrams represent the calcalkaline nature in source magma of majority of both HC and WC charnockitic rocks. SiO₂ vs. Na₂O+K₂O diagram indicates that most of the samples have granitic and granodioritic protoliths of sub-alkaline affinity in both complexes. As depicted by K₂O, CaO and Na₂O ternary diagram, majority of the WC charnockitic rocks have had granodioritic to tonalitic protoliths. P₂O₅ and TiO₂ oxide saturation temperature in the WC is about 800 °C, and in the HC it is 800 - 950 °C as shown by the thermometric observations.

Financial Assistant provided by the University of Peradeniya (Grant No. URG/18/42) and Ministry of Science, Technology and Research (Grant No. MTR/TRD/AGR/3/2/20) is acknowledged.

Keywords: Charnockitic rocks, Highland Complex, Major Elements, Wanni Complex, XRF Analysis